Product Number: B10216; CAS Number: 67066-09-5



5-Monobromo-10,15,20-triphenylporphine, 5-Bromo-10,15,20-triphenyl-21H,23H-porphine CAS: 67066-09-5 MDL: MFCD12022335

Molecular weight: 617.536 g/mol

Molecular Formula: C38H25BrN4

CAS Number: 67066-09-5

Storage: Store at room temperature, protect from light.

Synonyms: 21H,23H-Porphine, 5-bromo-10,15,20-triphenyl-, 5-Brom-10,15,20-triphenylporphyrin, 5-Bromo-10,15,20-triphenylporphyrin, 5-Bromo-10,15,20-triphénylporphyrine, 5-Monobromo-10,15,20-triphenylporphine, 67066-09-5, 5-Bromo-10,15,20-triphenyl-21H,23H-porphine, 5-monobromo 10,15,20-triphenylporphine, MFCD12022335

Fields of Interest: Synthetic Porphyrins, Mono Functionalized Porphyrins, Porphyrin Dimers

Background: 5-Monobromo-10,15,20-triphenylporphine is a synthetic porphyrin specialty chemical manufactured by Frontier Specialty Chemicals. 5-Monobromo-10,15,20-triphenylporphine is a useful starting material for the construction of functionalized porphyrins by transition metal mediated cross coupling.


1.) Hisano, et al. Host–Guest Complexation of Bisporphyrin Cleft and Electron-Deficient Aromatic Guests. J. Org. Chem. 2022, 87, 6, 4001–4009. https://doi.org/10.1021/acs.joc.1c02742

2.) Schissler, et al. A Synthetic Strategy for Cofacial Porphyrin-Based Homo- and Heterobimetallic Complexes. Chemistry, A European Journal. Volume 27, Issue 9, February 10, 2021, Pages 3047-3054. https://doi.org/10.1002/chem.202002394

3.) Stefan, et al. Cubane Cross-Coupling and Cubane–Porphyrin Arrays. Chemistry, A European Journal. Volume 24, Issue 5, January 24, 2018, Pages 1026-1030. https://doi.org/10.1002/chem.201704344

4.) Plunkett, et al. Synthesis and Reactivity of Allenylporphyrins. EurJOC. Volume 2013, Issue 8, March 2013, Pages 1566-1579. https://doi.org/10.1002/ejoc.201201535

5.) Locos, et al. Homo- and Heteronuclear meso,meso-(E)-Ethene-1,2-diyl-Linked Diporphyrins: Preparation, X-ray Crystal Structure, Electronic Absorption and Emission Spectra and Density Functional Theory Calculations. Chemistry, A European Journal. Volume 18, Issue 18, April 27, 2012, Pages 5574-5588.

6.) Sugita, et al. Palladium-catalyzed Kumada Coupling Reaction of Bromoporphyrins with Silylmethyl Grignard Reagents: Preparation of Silylmethyl-substituted Porphyrins as a Multipurpose Synthon for Fabrication of Porphyrin Systems. J. Org. Chem. 2012, 77, 23, 10488–10497. https://doi.org/10.1021/jo302122f

7.) Ryan, et al. Porphyrin Dimers and Arrays, EurJOC. Volume 2011, Issue 29, October 2011, Pages 5817-5844. https://doi.org/10.1002/ejoc.201100642

8.) Locos, The Heck reaction for porphyrin functionalisation: synthesis of meso-alkenyl monoporphyrins and palladium-catalysed formation of unprecedented meso–β ethene-linked diporphyrins. Org. Biomol. Chem., 2006,004, 902-916. https://doi.org/10.1039/B516989E

9.) Takanami, et al. Palladium-Catalyzed Cyanation of Porphyrins Utilizing Cyanoethylzinc Bromide as an Efficient Cyanide Ion Source.  Org. Lett. 2005, 7, 18, 3937–3940. https://doi.org/10.1021/ol0514294

10.) Oike, et al. Polyether-Bridged Sexithiophene as a Complexation-Gated Molecular Wire for Intramolecular Photoinduced Electron Transfer. J. Am. Chem. Soc. 2005, 127, 44, 15372–15373. https://doi.org/10.1021/ja055648w


Porphyrin Substitution

Meso-Substituted Porphyrins, Phenyl Substituted Porphyrins

Porphyrin Family

A3B Porphyrins, Brominated Porphyrins, Free Base Porphyrins

Functional Groups


Purity %


Molecular Formula


Molecular Weight



You may also like…

Shopping Cart
Scroll to Top